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Abstract

A theory of a-posteriori estimates for the finite element method was

developed earlier by the authors. Based on this theory, for a two-pont

boundary value problem the existence of a unique optimal mesh distribution

is proved and its properties analyzed. This mesh is characterized in

terms of certain, easily computable local erx'or indicators which in turn

allow for a simple adaptive construction of the esh and also perrit the

cmnputation of a very effective a-posteriori error bound. While the error

estimates are asymptotic in nature, nmerical experiments show the results

to be excellent already for 10% accuracy. The approac es are not re-

stricted to the model problem considered here only for clarity; in fact,

they allow for rath r straigtforward extensions to more general problems

in one dimension as well as to higher order elements.



1. Introduction

For the numerical solution of boundary value problems by finite-element

techniques, the construction of optimal, or near-optimal meshes is of con-

siderable practical importance. The same can be said when finite-difference

or collocation methods are used. Many articles in the literature deal with

questions that bear a relation to this problem, yet, as observed in [15),

even for two-point boundary value problems relatively few address it directly.

We shall not attempt to survey this literature.

There are various analyses of the approximation error of a given func-

tion by piecewise polynomials with a fixed number of pieces of fixed order

(see, e.g., (7), [8), [10), [12), [21) and the referances cited ther). In

principle, such studies may relate to the finite element method since that

method leads to optimal approximations under the energy norm. The mentioned

err estimates involve higher derivatives of the given function. With

these results as a basis, a number of authors developed methods for the

construction of optimal meshes for collocation and finite-difference methods

(i.39 [13), [14), (17), [22), [23)). For this the needed infomation about

the derivatives of the solution is obtained from the apMrxmate solution,

for instance, by means of difference foruulas. This procedure can be theo-

retically justified in the case of regular meshes (see, e.g., C20J). How-

ever, when ther are abrupt changes in the mesh--as they arise with refine-

ment teohniques-then "internal boundary layers" appear in the error function

(see, e.g., [2], (6]), and hmnoe the difference fomulae cease to approximate

well the desired derivatives.
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Various results on optimizing finite element meshes have appeared in

the engineering literature. Without entering into any details, we mention,

for instance, the articles [91, [18J, [193, C253, [26), and [27).

In recent year, for initial value problems for ordinary differential

equations very effective procedures have been designed and analyzed for

adapting the stepsizes and the order of the numerical methods (see, e.g.,

the survey £153). The principal tool is the availability of an or

analysis with a local, a-posteiori character. These estimates are

asymptotic in nature; yet practical experience has proved their relia-

bility for reasonable tolerances.

In this paper we use a new approach to the construction of optimal

finite element meshes. It is based on a theory of a-posteriori estimates

for the finite element method developed in [33, [43 (see also [5)). As

in the case of the initial value problems, the estimates are asymtotic

in character. Me specifically, higher-order tenus in the maximal mesh-

size S are neglected; that is, asymptotic expressions of the form

1 + o() as -* 0 are onsidered to be approximately equal to one# At the

same time, all constant factors of these (l+o(l))-terms can be evaluated

cauputationailly.

For clarity of presantation, we restrict the discussion to a simple

two-point boundary value problem involving a linear, self-adjoint operator

of second order. Moreover, for simplicity, we employ only piecewise linear

elements. The approaches allow for rather straightforvrd extensions to a

variety of mre general problems in one dimension, and there are no essen-

tial limitations to the use of higher-order elements, In fact, a nlogous
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techniques even pezit considertion of elenents of different order in

different parto of the mesh.

Continuous mesh distribution functions are used to prove the existence

of a unique, optimal mesh distribution and to analyze its properties. In

particular, it is shown that the value of the optimal exror is rather

stable under perturbations of the optimal mesh. Hence it is indeed un-

necessary to compute this mesh with exessive accuracy, The optimal mesh

is characterized in tens of certain easily computable local error indica-

toro. This allows for a simple adaptive method to construct that mesh

(see t[4) and, at the same time, to compute very effective a-posteriori

error bounds. Although, as mentioned, the error estimates have only

asymptotic character, numerical exeiene shows that, as in the case of

initial value problems, the results are excellet already for accuracies

of the order of ten percnt.
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2. Notation

Let I z I( ), a < $, be the open interval {x E RI; a < x < 0} and

I(a,a) its closure. As usual, H 0(I) denotes the space of square-

integrable functions on I and C 0(I) c H 0(I) the subspace of continuous

functions on 1. The norms on H 0(I) and C0(I) will be written as

III110 and iT"."1c, respectively.

Define E(I) as the space of real, infinitely differentiable functions

on I for which all derivatives have continuous extensions on I. Moreover,

let D(I) c E(I) be the subspace of all functions with compact support in I.

For any integer k ) 1, the spaces H(I) and 0 k(I) are the ccrnpletions of

E(I) under the norms

(2.1) 2III k idu12I k 0
i=O Ibc

and

k i
(2.2) ]'llullc'k I Ilia u c '

i 0 dx

respectively. Analogously, the completions of D(I) under these two norms

are the spaces k(T) and Ck(I).
0-0

Let a,b E C 0(I) be given such that a(x) ;a > 0, b(x) ) 0, Vx E .
Then E(I) and E (I) shall be the spaces H1(I) and HI(I),

0 respectively
with their norm replaced by
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(2.3) iull 2 f (au' 2 +bu2 )dx], (u' = d
I -

If b - 0 on I, then (2.3) is only a seminorm on E(I). On the other hand,

on E 0(I), (2.3) is always a norm which, moreover, is equivalent to iI.'Ill

Obviously, E0(I) is a Hilbert space and for b 1 0 the same is true for

E(I). We denote the inner product in either space by I(' '" )E" For b 0

on I, E(I) is a Hilbert space modulo the constant functions.

On I =I(c,8) we consider partitions

(24 A)A A <A A

and introduce the notations

I(A) T(x.

j = 1,25 ....,m

(2.5) h.(A) x -x

h(A) = max h.(A), h(A) = min h.(A)j=l5 ... m ] - j=l5...,m ]

All partitions A which for fixed X > 0, K >, 1 satisfy

(2.6) h(A) X Xh(A)'C

are said to be (X,K)-regular.

For given A = A(I), we denote by S(I, ) c Hl(I) and S0(I A) C Hl-(I) the

suol-aces of all functions for which the restriction to any I.(A), j = ... ,m,
hJ

is linear. Analogously Pk(I,A) c H1(I and Pk(i,A) c H'(1), k 0, shall con-

sist of the functions for which the restrictions to T (A), j l,...,m, belong

to C(T

4J
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For later use we mte the foliowing well-known leua (see, e.g., [21]):

lama 2.1; For given I = I(,B), a < 0, and A = A(I) there esdsts a ps-

tive comstant K sch that

(2.7) inf l 'U-U11E C KIi(A) 1lu112 , V u E H2(I) n 4M
WESo 0,A)

>.0

4
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3.1 Basic Formulation

As mentioned in the mtrodwtio, we restrict the discussion to a

simple model problem. For ease of notation, the unit interval I = I(0,1)

is used frmnow on tbrwghout the remairder of the paper. On I we

consider the equation

d d
(3.1) Lu] - - - a(x) ± + b(x)u f(x), x E I(0,1) ,

together with the bondary conditions

(3.2) u(O) = u() 0

We assume that a E C2(I), b,f (cl(I), and, as before, that a(x) , a > 0,

b(x) > 0, V x E I.

The weak solution of the problem is the unique u0 ( E0 (I) with

(3.3) i(u ,v)E = Ff(v), V v E E0 (I)

where

(3.4) Ff(v) f fvdx
I

Note that under our differentiability assumptions about a,b,f the solution

u0 of (3.3) belongs to C 3(I) and also satisfies (3.1/2).

With the partition A and the space S0 (IA) C H0(I) specified as in

Section 2, we consider the finite element solution u E S0 (IA) defined by
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(3.5) I(UA,v)E = Ff(v), V v ( S0('A).

Since u0 E H(I) fl H1CI), it then follows from Leamm 2.1 that

(3.6) IouU-OUE : K '(A) I iluoll 2

3.2 A-Posteriori Error Analysis

We consider the residual r = L(uh )-f on the interalls I, that is,

(3.7) rj(x) = (L(u,)-f)(x), V x ( I, 3j 1,...$m .

let zj . E0(Ix) be the solutions of

(3.8) i (z v)E F(v), V v E E0(I), j = 1$...jm

and set

(3.9) Z() 2 r1 IIz 112
j 1 j

The following result was proved in [3 ]:

Theorem 3.1: The error e = uA - u0 satisfies

(3.10) 1Ilell 2 = Z(A) 2 (1+0(Fi(a))) as Fi(A) -. 0 ,

where the constant in the bound of the O-t.eMf depends on a and b

but not on f and A.

We analyze the quantity Z(A) of (3.9) in som more detail. Because

uA is linear on any I, we may write

(3.11) r = L(u)-f = ' + -fP+
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where

(3.12) p.(x) = a(x)u"(x), W(x) = -a'(x)e'(x) + b(x)e(x), V x E I .

let oj,*j E E (IJ) be such that

(a)Ij (jv)E F (v), V v E E0(I1)

(3.13)

(b) Ij =v)E F(v), V v E E0(TM)

and therefore z. = pj + j

The smallest eigenvalue of the differential operator L on I. with

zero boundary conditions is bounded below by the smallest eigenvalue a 2/h.2- J
of the operator -ad 2/dx 2 on I.. Hence it follows from (3.13b) that

i.1llo{0. Ch 2 1i~lljll1

and therefore

2 ~2 2
(3.14) I * 2 HE F ) = F I 1l'o * Ch] I 11,r 1 .0

Here as in subsequent estimates C denotes a generic constant which

has different values in each instance but is independent of the other essen-

tial variables in the same expression. Now note that

(3.15) IIII = (-a'e'+be)2dx C J [(a'e')2+(be)2]dx C Ie2

which together with (3.14) gives



(3a)6 = 2 -

(3.17) Q(&) I -0j

j=1 j

Fk MDwrm 3.1 w obtain - vsi ae jai1

2 A)(14Moi)) = 'm 1

= [Q(A&) 2 3~a jO,&+je ,) 2](1.O~j))

=(Q(a)+aleLR()) 2 (1+06)) + (1--a 2)1 fleIIj ) 2 (1.od6))

But by (3.16) we have R(A) =0(6) and thus

which in turn implies that

(3.20) Ilell E =Q(A)(1+06h))

Therefore, in view of (3.10), we have proved the following result:



(3flq(L) = Z(L) 2 (l4#OtIf)), as(6

whr th ontn in the bound! of the Om depends on a an b but

notoni f and! A.

Iiile 'Ig rd- of Z(A) can be computed and! Q(A is not readily

accessibie, the gmatit, Q iz better suited than Z for our thaeireticaJ.

stixiitsz of optinal Partitions ft.
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4. Optimal Partitions - Case I

In this section we restrict omlves to the case when u" 0 0 on 1.

This condition will be removed in Section 5.

41 Reremsentations of N(a)

Recall that under our assumptions about a, b, f we have u0  C3(I)

and hence 0 =au; ( (9(I).

Leua '4.1: Suppose that u"(x) 0 0 for all x ( I and setX

(x,+xj_.)/2 , aj.1/2 a(x,. 1 / 2 ), j z o(j) wher Io(j)1 maxp(x)Ix(I.}.

Then

2 F[m -2(4.1) Q(A)2 = i aj i (l+o((A))), as R(A) - 0,

where the constant in the bound of the ON-ten depends on a, b and Ilflic,1.

Proof: Set

(4.2) 1 (x) O(x) - , V x ( Ij, j -- 11609$M

and define o1, j%2,j ( E (I) as the solutions of

1 (0 ,,v)E F- F(v), V v f E0(Ij)

(4.3)i j : l...m

I ( 2,, v), F0 (v), V v ( E0 (I)J

respectively. Then we have o3 = 2lj +2j'

By assumption there exists a constant o0 > 0 such that Io(x)l _ 0

for all x ( I, and hence that for all sufficiently wmall
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(81..) lo/.x)1 -. -L h. V x ( I.
J 0 0 j I

!bte also that for all x E I.J

(4.5) a. = mini a(x) x(I-} a -1/2(140(h.)), as h. -- 0 

Since for any v ( E0 (I)

HvII 2  1 ax)v' (x)2 d(1+Oh?)), as h - 0

it follows from (4.3) and (4.5) that

I~~ ~ ~ 29 v-

Jl l E  0 (1 E j(J

-2
= i sup f fvdxI / f(V' )2 dxjl(l+o(h))
a FVE0 (1j 1 . j

a. % V ) dx ] (lO(h.))

where E 0 (I.) is the solution of

":z, (x1= :'(xi) =0

This implies that

-2

(4.6) 1 .. 112 h. (l+O(hj)), as h. -0 0, j -- ,

In order to estimate P2,j we proceed as in the proof of (3.14). The

smallest eigenvalue of the operator L on I. is bounded below by

• • m• nn
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a.2 /h?. Herce by (4.3) it follows that

h2

I 29 .I I '

which together with (4.4) implies that

-2

(4.8) IvIf 2 < 2 a -  h.(1+O(hj)), as h - 0, j = is... .
jP1T j-1/2

Combining this with (4.6) we obtain--with some t ai 1--

II 11 2 : it 1,12 +2a Ito IP lb ,.I! + ID 1,'2

I jE I. 1,jE TI. i ,E I 29j E I 29j E

(4.9)1

=±(3+O(h')), as h. "+ 0, j = l...m .a j-1/23

By definition (3.17) of 0() this proves the lerima.

A partition A shall be a (,m)-partition if

(4.10) ENx 1 , j = 0,1,...,m
j m

for same function

(4.11) P (p 2(IA), '(X) - 8 > 0, V x ( Is j = 1,...,m, t(O) : 0, (i) 1

Note that any partition A is a (K ,m)-partition for the piecewise linear

function t E S(I,A) defined by

(4.12) k(x) : - l + 1 x T., T i 1,...,m .

For a (t,m)-partition we have
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(4.13) 1 t '(t)dt h.(x , as h. -0
m I.]

where the constant in the bound of the 0-tenm depends on b but not on m.

In terms of ( ,m)-partitions our lema 4.1 can be rewritten as follows:

Theorem 4.2: For the (E,m)-partition A we have

) 1 =2mdx (0l+OR(A))), as R(A)-, 0

where the constant in the bound of the 0-term depends on a, b, f and

but not on m.

Because p E C(I) and 1/' E (I,A), the proof follows directly from

the fact that the expression for Q() 2 in Lemma 4.1 is a Riemann sum of

(4.14).

By combining Terems 3.1, 3.2, and 4.2 we obtain the following result:

Theorem 4.3: For the ( ,m)-partition a the error satisfies

(4.15) ilel [ (x )21 dx (l+O(K(A))), as R(A) - 0

where the constant in the bound of the 0-term depends on a, b, f and .

ht not on m.

4.2 Optimal Partitions

The error forriula of Theorem 4.3 suggests that we consider minimizing

the variational integral

(4.16a) J(1) = f 2 d.
o0 3R7
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subject to the boundary conditions

(4.16b) V(() 0, () = 1

The Euler equation is directly solvable and the functions

(4.17) (xT) = dt, x f

form a field of extremls in 0 < x, y < 1. A standard application of the

E-function test (see, e.g., [1) then proves the following result:

Theorem 4.4: For all functions (4.10) we have

(4.18) -J(& ) 3

0 0

where C0 = V(' 0) with

(4.19) [f2 dt 

.breover, equality holds in (4.18) exactly when t = too

Note that the function E0 belongs to the class of functions (4.11);

in fact, we have E0 ( C2(I) and t(x) > 8 > 0 for x E I because

lo(X)l 1. P0 in that interval. For the partition A0 given by t0 we

obtain from Theorems 4.3 and 4.4 the following error formula.

Theorem 4.5: The (t0,m)-partition A0  is asymptotically optimal with

(4.20) IlleI12 - 1 (1+0(R(A))), as R() -1 0

where the constant in the bound of the 0-term depends on 0 but not on m.

By "asymptotic optimality" we mean here that for any other partition
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with sufficiently small R the error is larger than (4.20).

For any (R,m)-partition A set

(4.21) 2d j = l96069m .
12m I t I 3 a

These t. are related to the functions m. of (3.13) by
) 3

(4.22) 110 112 .(Em) 2(1+O(h.)), as hj -+ 0, j =19009m

This follows directly from the fact that the expression (4.9) for the norms

of 0. is--up to a factor (l+O(h.))--a Riemann sum of (4.22).J )

For the optiml partition A 0 we have

5.(909m) 2 z 1 P0(t) 2]1 / 3s
2 f [a- 3/

12m Y0  1

(4.23)

=~ ~ E (t)dt =,j = 1l,...,m.
0 1

In other words, for 0 all 9j are exactly equal and--by (4.22)--allI3

Ij 11 E are asymptotically equal.

Since the are not readily computable, we turn now to the quantities

(4.24) L (tm) = i 11z ! E9 j

which can be calculated. For the optimal partition A0 we obtain from

(3.16), (4.13) and Theoren 4.5 that
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(4.25) :j,12 = (l+0((A 0)))(o( 0)), as R(AO) - 0
I l 2my'

where the constant in the O-term depends rn a, b, f and 90 but not on m.

Thus it follows fomn (4.22), (4.23) and (4.25) that

j(t0,m)2 = J + (1+o(R))
E. 12mY

+ 1 1 (l+0(R))o(Rl/2)

+ 1 (1+0=))0d) 1 - (1+0&1/2))
l 2 mIY3 l2mIY3

We summarize this in the following form:

Theorem 4.6: For the optimal partition A0 we have

(4.26) .( 0m) 2: 1-- 0 (1+0(R(AO)1/2)), as R (0) 0 0

where the constant in the bound of the 0-term depends on t0 but not on m.

Thus, we see that also the quantities j(%orm) are asymptotically

equal .

Fram (4.13) we find for the steps hj of the optimal partition A0

that

(4.27) h. - (+0( ) as m "

and hence that
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h(A) > 0

_(A 0

with a constant X0 that does not depend on m but only on the problem

and p0. In other words, the optimal partition is (X0,1)-regular.

Oonversely, it turns out that asymptotically the optiral partition

A0 is characterized by the asymptotic equality of the pj. This is the

content of the following theorem.

Theorem 4.7: For the partition A suppose that

(4.28) iIzj(6)IIE = 4(l+o(h l2)), as h(A) - 0, j = l,...,m5

where [ does not depend on j. Then

(4.29) iIIe(A)IIE = iIe(A0)IIE(l+o(hl/2)), as h(A) _+ 0, j =

and

(4.30) x.-x A0 = O(R1 /2), as R(A) -* 0, j 15..,m.

Proof: We show first that A is (X,l)-regular. For ease of notation let

[r -2 1/2

-1/2

For any j l,...,m, we have by (4.9), with some lal 15,

11IZ.11 2  * 12

rl2h.(i+0(R)) + 2agjhY/2  2-- 1 ia]n I]* j'IE(I+O(E)) + I 11*j HE
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Let now h. = h. Then (3.16) and (3.6) show that
30

1. 113 0IIE _ C E I. 01ellE n C E2

or

-I= 3/2 -(1/2),a
(4.32) I. 11j"E E3 12 = h/0(h as hI-u 0

Hence we obtain from (4.31) and (4.28) that

2 (1+0(h /2)) 2 3 (1+0(h)) + E3 O(E1/2) + 3 0(h)
jo

or

2 -2 n3(1 -(1/2
(4.33) 2 = rj 0)(+h , as h 0 0

Now let h. = h. Then we have instead of (4.32)J1  -

I jllljlIIE = h hl/20(l/2),

and hence by (4.31), (4.28), and (4.33)

(4.34) q2 -3(i+0(1i/2)) 2 Tlh3 (1+O(E)) + 2qjI h 5/2 -1/20(E-/2 ) + h -2 O(E)

In other words, z 2 = h/h satisfies the polynomial equation

(4.35) o(, o (1O(/))z6 + o()z 2 + o(F1/2)z - ] (1+0(F)) o

By comparing (4.35) with the equation

2l (i+0(,-I/2))z6 I (,+O(h)):0(4.36) 20  -12 T j

Roue'le's theorem shows that for sufficiently small we have
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(4.37) Izl 2

This shos that A is indeed C,i)-regular.

Our assumptions about a and p ens u that for any fixed j, I j

m2

We represent A by the piecewise linear function E of (4.12). Trlen from

Theoremns 3.1, 3.2, and Leuma 4.1 it follows that

(4.38) IeHEI = [ J flhi (1+0()) ! Cr12

and hence, by (3.16) that

(4.39) I3,, j1 2 <Ch?. I],,e,,2  2 2-2 2 3-
-<i - < j E I-h ! -< hj

where in the last inequality the regularity of A was used. Therefore, we

have

h3/20 -1/2.ij~lij.h E  O jj (h )

whence by (4.31)

2= 2 1(+O())+O(Ei/2)+( 23 -1/2

11 = T)1) T)hj (l+O(h ))

i jE jj

that is, by (4.28)

(4.40) 2 2 2-h-(!+0(h )
J J
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Since

[12qi h I Pi ha t) Jt 100,a

(4.40) implies that

(4.41) fFp(t) 21 3 2 3. /2

Jjjr_ -] t : ( 2 ) (40( )) .
wbich by (4.19) sho~ws that

(4.42) f 1[(tj d= (22 1/ 3 (1+O(F1/2))(1 .1 )YO 
0o r

By (4-.38) and (4.UO) we obtain now

llellE2 = AL2(l+O(h 1 2 ))

which by (i.42) and Theoren 4.5 gives (4.29). Finally fron (4.41) it follows

by summation over the first j intervals

A
P(t) 2] 3dt (1+0(ii')aI t j'a-r my0 -

On the other hand, we obtain from (4.23)
A0

x" [ 2 -- / 3 (1+0(Fi/ 2))

Thus we have

Iith i1 3dtple = (.1 2 )

which implies (4.30).
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4. 3 Cmxtatoa Apects

Suppose that the optimal partition function gO is changed to some

partition function C = 50 + c satisfying (4.1U). By (4.13a) the derivatives

control the stepsizes, and hence we assume that iI ltIIIc is small. For any

given m, let IlellE and IIleOllE be the errors associated with the (Q,m)-

partition and (go,m)-partition, respectively. Then by Theorem 4.3 and

(4.16a) we have

I lle2 _ 11 ef 11 2 o 1 ) JO-Jty0I) as M-

Since the variational integral J is stationary at go we have J'( ) 0

and hence it follows from the mean-value theorem that

O-Ag 0)I = 0(Ill 2

Therefore, because (4.15) implies that

Ilell + IleolE = o(l), as m -c

we obtain

lIllellE - IlleOllEl = 0 (Il ";;c) as i116'[Ic 0 m -.

in other words, a change of g0 by some small Ille'uIc leads to a chmige of

the error proportional to Tile' jz. This shows that the value of the optimal

exror is rather stable wu.der perturbations of the optimal partition. On the

other hand, the optimal partition itself is not too stable and hence needs

to be computed only with relatively low accuracy.

By Theorem 4.7 the optimal partition is characterized by the asymptotic

equality of the quantities gj = ±j(o,m) of (4.24). Let rj agair denote



theresidna rUud)-fonthe I aIndset

(,,.,3) v?=I,.W2 x = I,.,.
I IiJ

Scall the qantities

(44) , . i/ n j = 1,2,...di

(4.1a4) ,()=( ()) /

the m Ihdi~tj's for the intemals 1----,I1e and set

M2/

All these quantities are directly cputable once the finite elent solutim

is krxm. fhe nexttheoreMi ShW that (a) is asWoticaly equal tbo the

Sile, .

Memvr 4.8: a) For any partitin a se hae

(4.46a) let2 = C(a) 2(l0(1)), as R(a) -- 0.
I

b) If A is (k,K)-reguar, 1 f iK < 2, then

(4.46b) vi = Pj(1'-(2.' )), as 2',(6) - 0, = l,... $m.P

where - K/2.

Proof: a) The definition of -P given in Lm 4.1 prvides that

]P]=ray. Ioj(x)I : 0 , 0,

and by (4.4), (3.15), and (3.6) we h",ave

Wo~~ -r c0 h., z 0 --_ C F~et-
P1

~I
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Hence by (3.11) and (4.2) we obtain with some Iai _< 1, i = 1,2,3, that

2? (.+y.(x)4'r.(x)) 2c~, .r JJ.

(4.47) pjh. + - Iho(h.1)

jj 2 0j

+ 2.1 _L -2 hY2 11 - h_3/2 1r10+ 2aih1 pjO(h3) + 2a2Pjh 2  IIII 0o + 2a3 PO p I.3

With

-2-3

S,) - Xa 1  
' C I I 1- 1 F

j=1 j-1/2 j31 i

it tlen follows that

E1,)2 = S(a) 2 +_1 )2oc 2) + 2 )

0

+ 2 a S(A) 20(h) + 2m2S(A) T(8) 0(h) + 2a 3S()T()O(F')

Mlis proves (4.4ia) since by Iwa 4.1 and Thre 3.1 and 3.2

se 2  2ieU(140(h)), T()&)2  C X 2e = C 2

j=l j

b) For OK)-regujar a with 1 < ic < 2 we have by (3.6)

i ] 0 ._ C 1i12E C h h n

fice (4.47) jiupies that

2 -2. 1 2 1 -2 r- 1  10(Iii) + +I(O3(2)

vi] = Pj " 6 --) O 0(h ) + -20(h ) + O" h +-"

uhdc, i,.s (4.,46b).
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It may be noted that in [3) we proved an upper bound for IllelE of

the form (4.46b) with 1/12 replaced by the larger factor 1/ 2 .

Theoren 4.8 states that

(4.48) e(A) 1 + O(h(A)Y, as R(A) -+ 0

In other wrds, the effectivity quotient 8 tends to one with o 0.

In contrast, the corresponding estimates in [3) only provided for 82 f- 12/. 2 .

We expect the error indicators to be asymptotically equal to the

quantities g, of (4.24). Theorm 4.9 below shows that this is indeed

correct for regular partitions. Hence our aim is to construct such

partitions for which all Fj are asymptotically equal. It turns out that

-- as before--these partitions are automatically regular.

Theorem 4.9: (a) Let A be a (,0)-regular partition with 1 f- K < 2.

Then

(4.49) 1 1z 1 = &(1+00h)), as 0(A) 0

withe = 1 - K/2.

(b) All partitions A for which

(4.50) lj = W(+o()) as h(A) -+ 0, j = l,...,m ,

with p independent of j, are (,l)-regular.

Proof: As in the case of (4.39)it follows from (3.16) and the assumed

regularity of A that

2 I 1 2-h2  2h3-2s

and thus
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i Ellll= llh/ 2 0(h), as h(A) -, 0

Now (4.31) shows that

1 1 z 11i2 T) 2h (1+ORh) + 2aqO1.Q(iie)(1+O(ji)) + 2h O (26~)

J J

Since by Theorem 4.8(b)

23 3

(4.51) 2i h. 3 1 *j~j**
j 3 12 a.j1/

this proves (4.49).

(b) Because, generally,

II-H C I je E CiJ )

it follows from (4.47) that

2 -9h -O~312
S = 2(1+0(h.)) + O(h /2)

whence

I (1+ o(1)) 1n + h~i(EI1 2 )

Now suppose that (4.50) holds for a and that h. = i; then

112(1+o(1)) = T,3(.n?0+0(Ei/2)1

Similarly, for h. = h we obtain
J1  -

A 2(1+ O(D)) = n h 3+ h 21jo(f/ 2)
3,- -
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and hence z = R/h satisfies

I2 +(i/2)z 3 =2 + O(i/2 )zjo ji

By comparing this with the polynomial for z in which the last term on the

right has been dropped, it follows by Rouche's theorem that

IzI (i2n~j1)2/

for sufficiently small h and therefore that A is (X,l)-regular.

Theorems 4.9 and 4.7 confirm that, as expected, our aim should be to

construct partitions for which all ej are asymptotically equal. Then the

error of the partition will be close to the asymptotically optimal error

(4.20). A natural approach for this construction is the use of an adaptive

mesh refinement algorithn of the form discussed, for instance, in [4]. We

shall not repeat the details.
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5. Optimal Partitions - Part II

In the previous section we assumed that u(x) A 0 for x E I. Clearly,

this represents a severe restriction. Actually, the results are largely

valid also when u1 has zerc s in I, but the proofs become more delicate.

We illustrate the approach for the frequent case when W0 E Cl(I) has finitely

many sirmple roots in I, say,

u "( k" = 0, u'"( ) 9 0, k = lj < i=
(5.1) 0 ) 0 l0,k ,...,q, 0_< < 2 < ... < 1.

Lema 5.1: Under the stated assumptions we have for any (X,c)-regular parti-

tion A with 15 K < 2,

-2

(5.2) Q(A)h2  a (l+O6(A)), as E(A) -+ 0

where e = 1 - K/2 and the constant in the bound of the 0-term depends on

a,b and f.

Proof: Because of (5.1), we may choose c 2 _ cl > 0, 60 > 0, such that

(5.3) c21x-l - Ip(x)l ?- cllx_-l, V Ix- 1 - %, k

For any 8 > 0 we. introduce the sets

18 5.x) x- l < 6 for some tk , c 16
(5.4)

J6~~ ~ ~~ = wtl..,;I nI# J l..,}kJ
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We assume that 60 n (8q)-I and hence that

h. f: 2( 0 +h)q f- 460q f-< for h <-60

jEJ 6 0

Since

mn {tp(x)l,xEI0 I =0 > 0

60 0

the estimate (4.9) of the proof of Lanua 4.1 holds for the subintervals

I. with j E Jc that is
60

. ll il2  2 3

23= jh(1+0(h)) as h(A) -* 0, j E J0

Hence for h r: 60 we have

(5.5) Q(A) 2 >_ E I ne 3 ( + ( )  > CPO2 2-22K* h._ Ch2&
c 3hj](1+o(h)) C 0 Xh h

EJ6  J

Now consider the sets (5.4) with 6 = K/ 2

=o < 60 Then (5.3) implies that

jIj _z-  /2c j E j6

and hence (4.8) modifies to

(5.6) i.ll5 2,jll0 C-- J(J ) 1 h , as h(A) - 0, j E J "

On the other hand we have

Iuj(x)l - 2 max Ip(x) C K/2  E
xEI.

whence by (4.7) and (5.5)
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(5.7) l 2.I Chh(1+O(h)) : CQ(A)2, hh, as h(A) - 0, j E 3

For ease of notation wet

m 2.3  
2  m 2S(A)2 = jl jh R(A)2 jlT I ll P2,jl E •

j~l j=1 j

Then it follows from (5.6) and (5.7) that

2  1 2 3 -2 + CQ( )2h2 & h.

(5.8) 6  6

_< C[S(A) 2+Q(A) 2]h

In the case of Lemm 4.1 the assumption u" = 0 does not enter into

the proof of (4.6), and thus we have also in the present case

(5.9) i.ll i,jIl r jh j(l+0(h)), as h(A) - 0, j =m

and therefore
m 2

(5.10) l S(t)2(l4(d)), as h 0
j=lj

Altogether, with some suitable constants a,R E [-i] it follows from

(5.8) and (5.10) that

2 m  2 : 2  : I )12 2

:S(A) 2( ) +0()) + aCS(A)(1+Od())(S() 2+Q(A)
2)1/2i

+ PC(S(A)2+Q(A)20e .

Afteri separating the middle term or. the right and squaring, we obtain the

equation
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CS(A) 2(S(A) 2+Q(0)2)s2e

4 -2e 2 2 n2c)+ SA4loReQ(A) (1+O(h ))-20(b)2S(A)2(l+O(!2 )) + S(A) (1+0(1 26))

which has the solutions

Q(A) 2 = $(A) 2(1+(R2o))± [S(A)40(1 2 )]1/2 . as h(A) + 0 ,

and hence proves (5.2).

Now the theory of Section 4 can be carried over to the

present case. As before, we consider partition functions t, but here we

need to weaken (4.11) by requiriA instead of V'(x) > 8 > 0 on each I.
23

that(P(x)/V(x)) 2isRiemann integrable on each subinterval. Mbreover, we

assume that for given and m - - the resulting ( ,m)-paftitions

are (X,K)-regular with 1 :- K < 2.

Then as in the case of Theorem 4.2 it follows that

(5.11) =()2 
- 1 dx (1+O((A)e)), as R(a) - 0

where the constant in the bound of the -tem depends on a. b, f and E but

not on m. This suggests again consideration of the variational problems

(4.16a/b) and hence of the optimal partition function E0 of Theorem 4.4.

Clearly

01 1/

0 (x) (p(x)a(x))

is Riemann-integable on
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We show first that the (90,m)-partitions are (X,5/3)-regular. Since

(5.12) Ip(x)I _ C min {l,minlx-kI}, V x E I
k

with some C > 0, it follows that

Oh 1 2/3 5/3

where again C3 > 0. This implies that h -7 -3/  as well as 1/m - Ch, and

hence the partition is indeed (X,5i3)-regular. Now Theorem 4.5 is easily

shown to hold with 0(h) replaced by O(hl/6 ).

c w-5/6
For any I. which intersects 16 with 6 = h we can use (5.6)

in the estimates leading to Theorem 4.6 to obtain

(5.13) P3 ( 0,m) 2 = 1 (l+0(h l/6)), as h 0, j E fc' 6 h 55/6
12m 30

In other words, for the optima! partition the P are asymptotically equal

for all intervals which are not too close to a root of u" As the numerical0*
examples of Section 6 show, the [j( 0,m) for the intervals close to roots

are generally larger and the ratio of the largest to the smallest of these

values does not tend to one for m - -.

The analog of Th .7 is somewhat more complicated. We formulate

it as the following theorem.

Theorem 5.2: For the partition A suppose that

(5.14) iI1zj(A)IIE = (1+O(h0)), as R(A) - 0, j = 1,... ,m

where i does not depend on j and 1 1/.2. Then A is (X,5/3)-regular and

(5.15) IIe(A)iE IIIe(AO)IIE (l+O(h6)), as h(A) - 0

Im )II f- 11 •' O
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Proof: 1) We show first that

(5.61 II jlE _ C5/2
(5.16) j = ,...,mI

with some C > 0 which depends only on p. Prom (3.13) it follows that

sup{ I1 1 f  p(x)v(x)dx, V v E (II II j IIE  II E J

Clearly, for given y,6 the function

v.x 1 i 1 xxjl2 1 (xx_ )

v (x) yh + 6h?)(x-xj_ I ) - 1 y(x-x 2 6(x-x 3 V x E I.

belongs to E0 (I) and a short calculation shows that

13h ~v' d 2 h3  f v(x)2dx - C 3 Ah
I.j J]]J
J J

where

a (Y2+(6hJ2)i/2

and all constants are positive. Hence also

1 12 Ca~h.

Now with

y p(xj_!), 6 : p!(xjl), p(x) -vl!(x) + j(x), V x E I

Sj~x W1 = o(hi), as hj - 0

we obtain
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If p~x)v(x)dxb > f v'(x)2 dx-( f ,.(X) 2dxb) 1/ f v(x) 2dx)b'2

Ii I I. I

whence--for sufficiently sall.l Ft-

1 a 20.fi U )hY jJJ/

(5.17)

Ca hY'2 El o(h.)]

By assu.mption we have

(5.18) u"(xW)2 + uIVI(x)2 t C > 0, V x E I0 0

and hence also with some C > 0

a? 2 2 + (6h.) 2 > h?(p(xjl )2 + (x-) 2) Ch? > 0

which together with (5.17) proves (5.16).

2) Next we show that for sufficiently small1 h.

(5.19) IllellE -: I ilJellE 2t C i/, C > 0

Obviously, we have

I E v 0

where the infinum is taken over all linear functions on I.. Thus v' (x)

is constant and it follows that
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I.~ie2!E f c[Ifu()dx - ( J i2 uf(x)dx)2-
E I hj I

Since

q(x) u (xj_) + uo(x. 1 )(x-xj_.) + 1 U2)(xj2

2
+ (h.) as hj -~ 0

a simple calculation shws that

i~lel>C[(x) 2 h3 + u" X 2-l

Using (5.18) we then obtain (5.19) for sufficiently sl1 h.

3) Now we can show that A is a (X,5/3)-regular partition. By Theore 3.1

and (5.14) it follows that

(5.20) llell 2  = mL2(l+(il.l2)),

and thus by (5.19) that

- 1/52/5(5.21) -cm / 5 P .

On the other hand, we have by (5.9), (4.7), (4.4), and (3.16)

9(i+0(Ei/12) : -1p,+p2j*iH

(5.22)

Cq h3/2 +h/2+h Ch3/2 1/2L C j1 h +h +h IllelIE] -< Ch +m ph.)J

Let h. = h arrd note that m l/h, then
30 -
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Ip-: C(h3/2 + h 1/21P)

and hee for sufficiently wa1"h

213
( 5 .2 3 ) h >_ C tL .

On the other hand, (5.16) and (3.16) give

tL(!*°(h"/12)) 1- 1jij+ l -T II'II E - TI il'l 11

J J

5/2>c(h l2-hj i :j1ielld)

and ferefore, by (5.21) and (5.23), for h. - h

(5.24) ' C 2- m1/2 >1 C-h5/2_- 2/3 ]

If the term on the right is positive then, with some positive constant
z= -1/2 u

(independent of h), z h must satisfy

5 2/3 2z -L z :CI.

By Cauchy's rule this implies that

-1/2 5: max(12C4)/5 (2 2/3) 1/3 4 1/5

since by (5.23) we have 4 f: 1 for sufficiently small h. On the ocher hand,

if the term on the right of (5.24) is negative, then we have immediately4/ 2/5.
p_/9 _ 5 Thas with (5.23) this gives indeed

)5o3 o ) C h .

-4) For -die proof of (5.15) let now 5 6 By (5.12) we have -qj ?: C5 for
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j E Jc an,, hence

m 2 (_. 2

i ~ 6 , V E ,

Thus frun I 5.1 and Theorems 3.1,3.2 it follows that

2 2)-2 e
(5.25) ilell I C lh, V j ( J6

and therefore (3.16) gives

ni. Thj 1/2-2e 3r./2 -8,e
(5.26) IjlIj'E _z C h.i < C '3 h/ 2  h3 h J6J6 6)] q J

respectively. Note that in the second inequality the (X,5/3)-regularity

of A was used. Together with (5.6) and (5.9), (5.26) leads to

I llzjlE i llDl~j+ 02,j+*jll = Tnjhi(+( (1+ 8,

and therefore by (5.14) to

(5.27) 22 )jh.(1+0)) $j ( e

Hence analogous to (4.41) we have

( 5.2 1/3 dt (1 2 )1/3(1+066)) j E
I

c
Let rn1  and m denote the cardinalities of J6 and J., respec-

tively, that is, m = ml + m2 . We want to show that

(5.29) 2, =(OW = 0( 6 )Ml
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For this note first that because of-nj f: C8 for j E J. we have by (5.22)

3/2 5/2 1/2
(5.30) P5C(8h +h. +hm i, j E J6

and thus

(5.31) h. 2 C min (() m 1 /2  p2/5) j E 1"

Suppose first that

2/3hj - C( , j E J 6;

then

5/3
(5.32) 2 m2 _ 6 (minh.)- 1 < C -7 ,j EJ 8 .jJ J6 3

Because of nj - 05 for j E Jc, it follows from (5.27) that

h - 2 $ j EJ 6

and hence

Tgether with (5.32) this proves (5.29) in this case.

Now suppxose that in (5.31) we have h. 2t C4 2/ 5 . Then

M2 _!: c6-2/5

dhile (5.24) implies that
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ml :t C-2/5

Together these estimates show once more that (5.29) holds.

Finally consider the case

h. -12/2
h. ~ , jEJ6 .

Then

1/2 /
m2  Cm1 2  Cb(ml+m2 )l 2

or

m2- C2 2i 2  C282ml

By applying Rouche's theorem to the pair of polynomials

z 2 _ az - am, = 0, z2  am, = 0, a = C282

it follows readily that

m2 - C: e/2 :Z Cln .

Thus (5.29) is valid and we have

(5.33) m = m(l+o(hl/1))

By definition of 4, it follows now from (5.28) and (5.33) that

(t 2 P(t)2  dt + f P(t)2LaT dt

Y [ m1a2i3 j{Oh5 a J jm2/ ( [a

n(221/3(10h (2 2 1/3 -10(,)
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or

2 1 1 (l+06 6))

From (5.20) and Theorem 4.5 (modified to the present case) this implies (5.15).

It may be noted that the analogous relation to (4.30), namely,

IA A 0
Ixj-xj I 0(Fi)

is easily proved when there is only one root of u" in I. In general, the0
situation appears to be more complicated.

Now we turn to the analog of Theorem 4.8.

Theorem 5. 3: For any (XK)-regular partition with 1 5 K < 2

(5.34) IIeII 2 1[j] (1+00))

where v. is given by (4.44) and 1 - K/2.

Proof: Recall that

2 2m Vjh.F,(A) 2 :1 r
T2 L L-12 j -1 / a -i 2

Using

2 2V22 If[ (pj+aj(t)+Tj(t)l dt

(5.35) J

1ao(x)j f Ch, 11I-0 _1 f C ijl!eIIE

we obtain, with certain Icil !E C, i 1,...',s
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-2 3
2 m p-h. m 5 m2212&(Ai) I 4-. +C h.+ C2  1 1 IleI Eh~

j=I j-1/ 2  j=1 j=l 

m -5/2 m7/2
+ C3 h. + C4 I IlellE ph. +C5 IllellE hi =:1 jJ jj  s :

By Lfrma 5.3. and Theorems 3.1 and 3.2 the first term is asymptotically equal

to 12 Illell2 and from (5.5) it follows that IhlellE > ChK. The other terms are

then easily estimated to give-with different constants Ci --

e(A) 2 = Ilell2(l+O(hF)) + C, ilelI 2 h + C2 Illel2 2

I/ - E2 -1/

h + -/2 + IllellE 1/2 + C4  2 0+/2

Iel2I(1+o61))

which proves (5.34).

Finally, we show that also Theorem 4.9 carries over to this case.

Theorem 5.4: For the partition A suppose that

(5.36) c. = I(l+O(h¢)) as 0() - 0, j l,...,m ,

where g does not depend on j and e = 1/12. Then A is (XS/3)-regular

and

(5.37) 1Ile (A)IIE -< IIle(AO)lE (l+O(hF)), as m o

Proof: We show first that .A is (X,5/3)-regular. Foil this note that generally
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IiZiIIE 112 2(1+00hY), as h..- 0, j ,.,I E T

This follows from (3.8) in the sane manner as (3.14) follows from (3.13b).

Thus by Theorem 3.1 and (5.36) we have

i11ell 2 < C nP 2

whence by (5.19)

_ c m1 / 5 A2/5

Now (5.35) gives

(5.38) ,j- 1/2 3/2+I-1 p 6+a+.tj h Ih hellE)

and thus--as in the case of (5.23)--for sufficiently small £

h _Cp.2/3

By (5.12) we have

P p(x)2 dx : C h3

and thus

~ I~.11) > 5/2h
>?: iI ' 10 - I- C(hj -h Ii HellE)

leads to (5.24). The remainder of the proof of the regularity of A now

proceeds exactly as part 3) of the proof of Theoren 5.3.

Similarly the proof of (5.37) follows that of (5.15). In fact, for

E we have
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6 ) = hJ2R-&
I IaI -10(h p6h 0(hj )

11r 1 j O (E l/ -
2  -~2 e) 1/2 -

j JJ i. Oh PA ~

which as in (4.47) leads to

v? 2h1+6-) j ' c

that is,

p2 2 3(+(6) - j (e= )?h(l+O(h )), 5 E jC

Therefore (5.28) holds again. Moreover, because of p. 5 O1. we obtain

from (5.38) the estimates (5.30) and (5.31) which in turn imply (5.29).

Now the remaining conclusions of the proof of Theorem 5.4 apply verbatim.
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6. Numerical Examples

We illustrate the theoreical res lts with some comnputational results

for the following two sample proble.:

Sample Problem A:

(6.la) (x+a)d+ N+0% = f, 0< x< 1, a >0,

(6.lb) u(0) = u() = 0

where f is chosen such that the solution of (6.la/b) is

(6.lc) u0(x) = (x+a)r -_ [a(r-x)+(I+c) xJ, x E I .

Here the coefficient functions and f are aralytic in I , and we have

u(x) 9 0 for x E I. Hence the theory of Section 4 applies. Note that for

small a and negative r we can create severe near-singularities.

Sample Problem B:

(6.2a) -u" + u = f, 0< x< 1

(6.2b) u(0) = u() = 0

where f is chosen such that the true solution is

(6.2c) u0 (x) = eax(x-o) + [p(l-x)-e a(1-P)x], 0 # 0, 0 1 + 2

Here f is analytic on I and u(x) has a simple root at x = 1/2, and

hence we zan apply the theory of Section 5.

The tables of computational results given below include the following

data:
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m number of intervals used in the partition

E l0O0ilellE/IuOl11E relative error in the energy rm expressed
in percent

EO 1 asymptotically smallest error achieveable

0  with meshes of m intervals

e = IlleIE/e(A) effectivity quotient (4.39)

* =( max m)/( min e-) ratio between the largest andj~l...,m j=l,'..., smallest value of the error indi-
cators ei(A) of (4.38a)

xi partition points of the particular mesh

Tables 1 through 6 concern two cases of sample problem A. Each time the

left endpoint x = 0 of the interval is near a singularity of u0 ad this

is re.flected in the fact that the largest and smallest error indicators ej(A)

always occur on the first and last subinterval 1  and Im respectively.

But in the second case the energy expression includes a weight (x+a) 2 which

goes strongly down near x = 0. Thus in this case the near singularity of

the solution shows up more weakly under the energy norm.

In all cases the effectivity quotient is less than one and hence the

estimate e(A) turns out to be an upper bound of IllellE. Of course, the

theory is only asymptotic in nature and thus e(A) could be smaller than

itlellE. Note that for relative accuracies better than 10% the estimate never

overshoots the true error by more than 10%. In fact, for higher accuracies

e equals one for all practical purposes. This is in ccmplete agreement with

the theory and shows that the a-posteriori error estimate is very reliable
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and not at all pessimistic.

In the presence of the near singularity, the use of nonuniform

meshes is very advantageous (see, e.g., Table 6), and the approximately

optimal meshes produce errors close to the optimal values which by

Theorem 4.5 decrease with 1/r. Here the "weaker" singularity of the

second case is rather noticeable. The nonuniform meshes are only approxi-

mately optimal as the ratio c. shows which in each case is reasonably

close to one but certainly not equal to it. Nevertheless, as expected,

the corresponding errors are clearly not very sensitive to such changes

of -the mesh except for low accuracies.

Tables 7 through 11 contain results Cor two cases of sample problem B.

Essentially all aspects are the same as for problem A. However, in all

cases the maximal c. occurs in the neighborhood of the root x0 = 1/2

of u!(x), and, as expected, the ratio w does not converge to one. How-

ever, if o) is computed only for all intervais outside a small neighborhood

of x0 , the, we have again the desired convergence of o to one.
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Table 1.

Problem A with p 0 0, q 1 1, r = -1/4, a 1/100
Uniform mesh, IiIUOIE = 6.09811

m E E0

5 85.301 22.613 .1706 8.84(+6)

10 73.768 11.306 .2950 2.34(+7)

20 58.784 5.653 .4702 5.31(+7)

40 41.933 2.827 .6708. 1.11(+8)

80 26.3;.b 1.413 .8419 2.19(+8)

Table 2

Problem A with p = 0, q =, r = -1/4, a = 1/100
Approximately optimal mesh, IIIUOIE n 6.09811

m E E0  6

5 22.243 22.613* .6524 5.854

10 11.289 11.306 .9025 2.274

20 5.652 5.653 .9757 1.372

40 2.826 2.827 .9940 1.111

80 1.413 1.413 .9984 1.031

*Note here the asymptotic nature of the estZimate E0 of the lowest
achieveable error.
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Table 3

Problem A with p = 2, q = 1, r -1, a = 1/100
Uniform mesh, IIIU0QIE = 0.28678

m E E0  0 o

5 25.215 9.619 .3270 3.227(+3)

10 13.696 4.809 .4467 4.640(+3)

20 7.296 2.404 .5966 8.316(+3)

40 3.813 1.202 .7610 1.055(+4)

80 1.959 0.601 .8947 1.308(+4)

Table 4

ProblemAwith p = 2, q = 1, r =-1, a 1/'00
Approximately optimal mesh, Illu0IE = 0.286,

m E E 0

5 9.994 9.619 .7679 3.355

10 4.809 4.809 .9331 1.666

20 2.409 2.404 .9828 1.184

40 1.203 1.202 .9956 1.049

80 0.601 0.601 .9989 1.012
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Table 5

Problem A: Approximately optimal mesh for m 10Case Al: p = 0, q = 1, r = -1/4, a = 1/100
Case A2: p = 2, q = 1, r =- /4, a = 1/100

X.

Case Al Case A2

0 .0000 .0000

1 .00207 .0127

2 .00487 .0340

3 .00877 .0676

4 .01443 .1170

5 .02308 .1862

6 .03732 .2798

7 .06318 .4025

8 .11781 .5598

9 .26831 .7569

10 1.00000 1.0000



- 51 -

Table 6

Problem A with p = 0, q 1 1, r = -1/4, a = 1/100
Partitions obtained from the uniform mesh by successively subdividing

the first interval into half

m E E0  8

10 73.768 11.306 .2950 2.34(+7)

11 58.853 10.278 .4705 5.85(+6)

12 42.286 9.421 .6922 1.45(+6)

13 27.357 8.696 .8457 3.45(+5)

14 17.634 8.075 .9340 7.49(+4)

15 13.580 7.530 .9447 1.41(+4)
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Table 7

Problem B with a = 1, 5/2Uniform mesh, IlluOIE .071070

m E E0  o

5 43.462 32.317 .9759 1.126(+2)

10 22.080 16.158 .9939 1.757(+2)

20 11.083 8.079 .9984 7.568(+2)

40 5.547 4.039 .99924 3.142(+3)

80 2.774 2.019 .99990 1.281(+4)

Table 8

Problem B with a = 1, = 5/2
Approximately optinal mesh, IIluOIIE = .071070

m E E0  6

5 33.869 32.317 .9466 1.577

10 16.519 16.158 .9694 1.676

20 8.153 8.079 .9823 1.755

40 4.049 4.039 .9894 1.788

80 2.018 2.019 .9933 2.437
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Table 9

Problem B with a = 5, P = 9/10
UnLifonm mesh

m E E0

5 49.477 18.174 .9059 4.049(+3)

10 26.554 9.087 .9742 1.229(+4)

20 13.530 4.543 .9934 4.621(+4)

40 6.797 2.271 .9983 1.808(+5)

80 3.403 1.135 .9995 7.173(+5)

Table 10

Problem B with a : 5, p 9/10
Approximately optimal mesh

m E E0  co

5 17.021 18.174 .7988 2.617

10 9.181 9.087 .9217 2.822

20 4.521 4.543 .9595 2.324

40 2.254 2.271 .9820 1.661

80 1.138 1.135 .9958 1.614
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Table 9

Problem B with a =5, = 9/10
Uniform mesh

m E E 0

5 49.477 18.174 .9059 4.049(+3)

10 26.554 9.087 .9742 1.229(+4)

20 13.530 4.543 .9934 4.621(+4)

40 6.797 2.271 .9983 1.808(+5)

80 3.403 1.135 .9995 7.173(+5)

Table 10

Problem B with a =5, 9/10
Approximately optimal mesh

m E E0  o

5 17.021 18.174 .7988 2.617

10 9.181 9.087 .9217 2.822

20 4.521 4.543 .9595 2.324

40 2.254 2.271 .9820 1.661

80 1.138 1.135 .9958 1.614
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Table 11

Probiem B: Approximately optimal mesh for m 10
Case B1: a = 1 P: 5/2
Case B2: a = 5, 9/10

IX.

x.-

j Case B1 Case B2

0 .0000 .0000

1 .0,97 .4192

2 .1859 .6918

3 .3001 .7715

4 .5218 .8255

5 .6872 .8673

6 .7754 .9016

7 .8442 .9309

8 .9025 .9565

9 .9538 .9794

10 1.0000 1.0000

, p , •u
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